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1 Introduction

This article lays out solution and simulation algorithms for sovereign default models with long-
term debt, in the tradition of Eaton and Gersovitz (1981), Arellano (2008), Hatchondo and
Martinez (2009), and Chatterjee and Eyigungor (2012). For an introduction to the substantive
issues surrounding public borrowing, external debt, fiscal policy, and crises, consult the relevant
Encyclopedia entry, Yue and Wei (2019), and the textbook treatments of Uribe and Schmitt-Grohé
(2017, ch. 13) and Aguiar and Amador (2023). Farah-Yacoub, Luckner, and Reinhart (2024) find
large social costs from the kind of crises these models address. Moreover, some of the modeling
and numerical techniques discussed here are also relevant for the study of consumer unsecured
credit (Chatterjee et al. 2023), corporate bankruptcy (Hennessy and Whited 2005; Corbae and
D’Erasmo 2021), and related topics.

The incomplete markets models considered here feature default on the equilibrium path and
bond yields that endogenously compensate lenders for the risk that the borrower might default
on its obligations. Such models are challenging to compute for at least two reasons. First, the
presence of the discrete default choice induces substantial nonlinearities or discontinuities in
policies and bond prices in areas of the state space with a non-trivial risk of default. Second, with
long-term debt and a lack of commitment over future bond issuance behavior, debt dilution is a
major driver of bond yields. The importance of debt dilution for matching key features of yields
data and the disconnect between short-term default rates and yield spreads is well understood
(Hatchondo, Martinez, and Sosa-Padilla 2016; Hatchondo, Martinez, and Roch 2020) but so is
the role played by long-term debt in frustrating convergence of standard algorithms (Chatterjee
and Eyigungor 2012). Informally, debt dilution is the incentive of lenders to offer the sovereign
depressed bond prices, for a given level of borrowing today, because they correctly forecast that
in the future the sovereign will borrow more, which in turn makes the likelihood of eventual
default higher. Even if the sovereign is unlikely to default next period, because debt is long term,
lenders are concerned about all future borrowing and default opportunities, and offer bond prices
consistent with discretionary equilibrium behavior.

With short-term debt, under weak conditions, the model has an unique equilibrium which can
be shown to be the fixed point of a contraction (Auclert and Rognlie 2016; Aguiar and Amador
2019) and standard numerical methods can deliver convergence to a relatively precise solution
(Hatchondo, Martinez, and Sapriza 2010). On the other hand, with long-term debt, convergence
often fails, due to at least two issues: the non-existence of equilibrium in pure strategies and a
multiplicity of equilibria. The reference discussion on non-existence is Chatterjee and Eyigungor
(2012, section III.B.), which explains why even a minuscule change in the bond price can trigger a
discrete switch from default to repayment, or vice-versa, or among bond issuance choices that
would previously make the borrower indifferent. In turn, such switches call for discrete changes in
the bond price schedule. This problem is compounded by the non-convexity of budget sets, which
means that bond levels over which the borrower is indifferent are not necessarily near each other,
and thus finer grids are possibly not helpful. Figures 1 and 2 of Chatterjee and Eyigungor (2012,
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p. 2681–2682) deliver this message forcefully. Recent work has also emphasized the pervasive
nature of multiplicity of equilibria in these models (Aguiar and Amador 2020; Stangebye 2023).
How to identify and select among equilibria is an ongoing area of research.

The literature has explored several solution methods for long-term debt models: papers like
Hatchondo and Martinez (2009) and Hatchondo, Martinez, and Sosa-Padilla (2016) employ cubic
spline approximation, numerical constrained maximization routines for the borrowing choice,
and take the limit of the finite horizon economy. The borrower’s first-order conditions can be
employed as well, as done for example by Arellano et al. (2016), Mateos-Planas et al. (2023b), Jang
and Lee (2023).1 Chatterjee and Eyigungor (2012) restrict attention to discrete state spaces and
perturb borrowing with an iid, continuously distributed extra endowment shock. Also based on
the idea of small perturbations to the borrowing policy, which weakens the tight destabilizing
interdependence between borrowing policies and bond prices, Dvorkin et al. (2021) introduce taste
shocks, as commonly employed in the structural estimation of discrete choice models. This latter
approach will be the one described in detail in this article. Finally, more recently, Bai et al. (2023)
employ adaptive sparse grids together with adjustment costs, while Gu and Stangebye (2023)
develop an approach based on Gaussian Process Dynamic Programming. Such methods hold the
promise of enabling larger state spaces and thus richer models.

One advantage of discrete choice methods over other approaches is that they eliminate
the need for the use of computationally costly constrained maximization routines, as with
the use of interpolation, or the algorithmic partition of a continuous shock support, as done
by Chatterjee and Eyigungor (2012). The resulting simplicity of the method enables its use
in models with richer features, including news shock (Dvorkin et al. 2020), monetary policy
and pricing frictions (Arellano, Bai, and Mihalache 2020), currency unions (Wolf and Zessner-
Spitzenberg 2021), maturity choice in restructuring (Mihalache 2020), or partial default and debt
relief policies (Arellano, Bai, and Mihalache 2023), to name but a few. The closed-form expression
characterizing the choice probabilities and expected value mean that the algorithms presented
here are particularly well suited for computation on the GPU and relatively easy to parallelize
over multiple computer nodes, in a cluster setting.

A potential concern raised by the discrete choice methods employed here is whether the
addition of such Extreme Value taste shocks alters the incentives faced by the sovereign. Briglia
et al. (2022) argue that they do, in the form of additional incentives for precautionary savings, in a
model with incomplete markets but without default. They suggest ways to quantify and correct
for the additional mechanism induced by agents being aware that their future choices will be
perturbed by taste shocks. Briglia et al. (2022) also discuss the issue of grid sensitivity and argue
that the appropriate correction needs to be based on the measure of the feasible budget set rather
than the number of grid points.

To fix ideas, we start in Section 2 by laying out a canonical sovereign default model with

1. For a general discussion of the difficulties raised by the mix of discrete and continuous choices, as inherent in
default models, see the reference treatment of Iskhakov et al. (2017).
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long-term debt. In Section 3, we describe the alterations required by the use of discrete choice
methods, namely augmenting the model with Extreme Value taste shocks, and detail the solution
and simulation algorithms in turn. Finally, Section 4 briefly comments on how our algorithms are
impacted by several salient extensions common in applied, quantitative work.

2 The Canonical Sovereign Default Model

Consider the following canonical sovereign default model with long-term debt, a real, endowment
model, as in Hatchondo and Martinez (2009) and Chatterjee and Eyigungor (2012). We focus on
the case of long-term debt because of the special role and quantitative importance of debt dilution
for the level and volatility of spreads and default risk, as discussed by Chatterjee and Eyigungor
(2015) and Hatchondo, Martinez, and Sosa-Padilla (2016).

This is an infinite horizon, discrete time setting. The model consists of the sovereign of
a small open economy and a unit measure of competitive, risk-neutral international lenders.
No distinction is drawn between the sovereign and its domestic private sector, a “centralized
borrowing, centralized default” assumption. We discuss the agents’ problems in turn and define
the equilibrium of this economy. In Section 4 we briefly consider extensions which relax some of
the assumptions made, including recovery and lender risk aversion.

2.1 The Sovereign’s Problem

In any one period, the sovereign can either have good credit standing, in which case it has access
to international financial markets, or be in a state of default. While in good credit standing,
the sovereign has the option to declare default, stop debt service payments, and transition to
the default regime. With a constant probability, default is resolved and the sovereign reenters
international markets without outstanding debt and good credit standing.2

The sovereign receives an endowment y governed by a discrete Markov chain with support Y

and transition matrix Πy. While in good credit standing, the sovereign starts each period with
endowment realization y and outstanding debt level B. It then chooses whether to default on
its debt or not, by comparing the value it achieves by servicing the debt and retaining market
access, Ṽr(y, B), and the value it can achieve by entering default, Ṽd(y). The value of default is
independent of the debt level upon default, B, because of our assumption of no recovery, full debt
repudiation. The policy function D(y, B) ∈ {0, 1} encodes the sovereign’s default decision, and
the value function of starting the period with states {y, B} is given by Ṽ(y, B), with

Ṽ(y, B) = max
d∈{0,1}

{
(1− d)Ṽr(y, B) + dṼd(y)

}
(1)

and the corresponding arg max encoded in D(y, B).

2. Section 4.1 addresses the case of endogenous, positive recovery rates and references works with an endogenous
length of market exclusion.
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If the sovereign chooses to not default, it makes a debt service payment proportional to the
stock of outstanding debt, κB, and has the option to issue or buy back units of its long-term
bond in international markets.3 Lenders face the sovereign with a bond price schedule q̃(y, B′)
which depends on the level of debt the sovereign will carry into next period B′ and the current
endowment y, as they are predictive of future default and borrowing behavior. The sovereign’s
problem with market access is given by

Ṽr(y, B) = max
B′

u(c) + βEy′|yṼ(y′, B′)

s.t. c = y− κB +
[
B′ − (1− δ)B

]
q̃(y, B′)

(2)

and we denote the arg max by B(y, B).
The parameter δ controls the duration of the debt. A share δ of the outstanding debt matures

while the rest, (1− δ)B, remains outstanding. As a result, if the sovereign is to have outstanding
debt level B′ next period, it can only issue B′ − (1− δ)B additional units this period. These are
the units that it can sell to lenders at price q̃(y, B′).

If the sovereign is excluded from international markets, in a state of default, it makes no choices
and consumes its endowment subject to a penalty, c = h(y) ≤ y. The sovereign reenters markets
next period, with a good credit standing, with constant probability χ. The value associated with
the default regime is

Ṽd(y) = u(h(y)) + βEy′|y

[
χṼ(y′, 0) + (1− χ)Ṽd(y′)

]
. (3)

2.2 International Lenders

International lenders are competitive and risk-neutral. Their opportunity cost of funds is given by
the international risk-free rate r. A representative lender from the unit mass of lenders faces the
following problem over the choice of bonds it purchases a,

max
a

{
−q̃(y, B′)a +

1
1 + r

Ey′|y(1−D(y′, B′))
[
κ + (1− δ)q̃(y′,B(y′, B′))

]
a
}

, (4)

which is linear in a. For an interior optimum, the bond price must satisfy

q̃(y, B′) =
1

1 + r
Ey′|y(1−D(y′, B′))

[
κ + (1− δ)q̃(y′,B(y′, B′))

]
. (5)

If the sovereign defaults next period, the lenders receive no payment and the bonds are worthless.
If instead the sovereign does not default, each unit of debt makes service payment κ and a share
1 − δ will remain outstanding, with next period market value of q̃(y′,B(y′, B′)) per unit. In
expectations, lenders break even.

3. Note that markets are incomplete because the only financial asset traded is a defaultable, long-term bond, even
though the endowment process y induces potentially many states of the world next period.
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It is straightforward to show that the risk-free bond price, that is if the sovereign does not
default in any state, is qrf =

κ

δ + r
, and the yield-to-maturity of the bond is given by κ

q̃(y,B′) − δ.

The spread is, then, the difference between the bond’s yield-to-maturity and the risk-free rate r.4

Sections 4.1 and 4.2 concern the cases of positive recovery and lender risk aversion, respectively.

2.3 Equilibrium

We restrict attention to Markov Perfect equilibria, where only the payoff-relevant variables y and
B are states. Our notation throughout reflects this restriction. We can now define the model’s
equilibrium.

A Recursive Markov Perfect Equilibrium consists of

1. the sovereign’s value functions Ṽ(y, B), Ṽr(y, B), and Ṽd(y),

2. the sovereign’s default and issuance policies D(y, B) and B(y, B), and

3. the bond price schedule q̃(y, B′),

such that

a. given the sovereign’s policies, the bond price schedule satisfies equation (5), so that lenders
break even in expectation,

b. the sovereign’s policies solve to the maximization problems in equations (1) and (2), and

c. the value functions satisfy equations (1), (2), and (3).

The restriction to Markov Perfect equilibria is not innocuous, although a standard way to
introduce equilibrium default. It rules out mechanisms based on reputation—although see
the related work by Amador and Phelan (2021, 2023)—and commitment over future default or
borrowing policies. Recent work by Hatchondo, Martinez, and Roch (2020) and Mateos-Planas
et al. (2023a) revisits the implications of commitment in default models.

3 Computation with Taste Shocks

We follow Dvorkin et al. (2021) and Gordon (2019) in augmenting the model with taste shock and
computing it with discrete choice methods.5 This approach greatly alleviates the convergence
problems discussed by Chatterjee and Eyigungor (2012). Chatterjee and Eyigungor (2012) restrict
attention to B values in a discrete set B and introduce a second continuous, iid endowment shock,
which acts akin to a randomization device across B′ options which deliver comparable values to

4. It is often convenient to normalize κ = δ + r so that the risk-free bond price is qrf = 1. This has the useful
side-effect of making the units of B be those of the endowment.

5. For completeness, we will introduce taste shocks to both the default D and borrowing decisions B, although key
to the method’s success are the perturbations to the B′ choice.
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the sovereign. Our approach here also requires that B be in a discrete set but it does not rely on
changes to the endowment process. Instead, we induce choice probabilities over B′ via Extreme
Value Type I shocks associated with each B′ option, with the computational advantage that such a
functional form assumption delivers closed-form expressions for choice probabilities and expected
values, a multinominal logit structure (Train 2009). These methods are widespread in structural
applied work and have proven critical for the study of consumer credit by Chatterjee et al. (2023).6

3.1 Augmenting the Model with Taste Shocks

We add choice-specific taste shocks to the two options in equation (1), εd and εr, both distributed
Gumbel(−ηµ, η), to obtain

V(y, B) = Eεd,εr max
d∈{0,1}

{
(1− d) [Vr(y, B) + εr] + d

[
Vd(y) + εd

]}
, (6)

where η is a scaling parameter which governs the relative importance of taste shocks in shaping
choices7 and µ = 0.57721566 . . . is the Euler-Mascheroni constant. Note that now V(y, B) is the
ex-ante value to the sovereign, before observing the ε · shocks, which is why we do not need to treat
the shocks as extra state variables. We drop the tilde for the bond price schedule and the value
functions incorporating taste shocks, to highlight that they can be understood as approximations
to the corresponding objects of the model in Section 2.

Given our distributional assumption, standard arguments imply that the ex-ante probability of
choosing default is given by

Pr(d = 1|y, B) =
exp Vd(y)

η

exp Vd(y)
η + exp Vr(y,B)

η

(7)

and the corresponding expected value is

V(y, B) = η log
[

exp
Vd(y)

η
+ exp

Vr(y, B)
η

]
. (8)

We proceed in a similar manner in introducing taste shocks in the borrowing problem (2), by
associating each B′ level with its own shock εB′ ∼ Gumbel(−ρµ, ρ).8 First, to ease exposition, let

6. For Chatterjee et al. (2023), taste shocks are helpful in preventing lenders from perfectly inferring heterogeneous
borrowers’ private type by observing their choices, as taste shocks imply that all feasible action are taken with positive
probability by all types.

7. As we take η → 0, taste shocks are eliminated and the sovereign picks the best option based on the comparison of
Vr and Vd alone. If, instead, we take η → ∞, all feasible choices are picked with equal probability, in particular here
independently of the values of Vr and Vd.

8. We will implicitly restrict attention to the quantitatively-relevant case of debt, B′ ≥ 0. If the sovereign could hold
assets, start the period with B < 0, we would have to confront the possibility of “default” on an asset position, which
would happen with positive probability due to the taste shocks.
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us introduce an auxiliary function

W(y, B, B′) = u(y− κB + [B′ − (1− δ)B]q(y, B′)) + βEy′|yV(y′, B′), (9)

the net-of-taste-shocks value of choosing B′ in state {y, B}, and set W(y, B, B′) = −∞ whenever
the associate consumption level is not strictly positive. Then, (2) becomes

Vr(y, B) = E{εB′}max
B′

{
W(y, B, B′) + εB′

}
(10)

and the resulting choice probabilities and ex-ante value are

Pr(B′ = i|y, B) =
exp W(y,B,i)

ρ

∑j exp W(y,B,j)
ρ

(11)

and

Vr(y, B) = ρ log

[
∑

j
exp

W(y, B, j)
ρ

]
, (12)

respectively. The parameter ρ controls the magnitude of taste shocks for borrowing. It does not
need to be equal to η, which plays an analogous role for the default decision.

Finally, the bond price schedule consistent with these choice probabilities is given by

q(y, B′) =
1

1 + r
Ey′|y(1− Pr(d′ = 1|y′, B′))

[
κ + (1− δ)∑

j
Pr(B′′ = j|y′, B′)q(y′, j)

]
. (13)

Note how, with these alterations, the resulting choice probabilities over default and the various
B′ options vary smoothly with changes in the bond price, thus avoiding the non-existence problems
caused by the discreteness of policy, which Chatterjee and Eyigungor (2012) discuss.

We are now ready to turn to this augmented model’s solution algorithm and numerical
implementation.

3.2 Solution Algorithm

The logarithmic and exponential functions in equations (11) and (12) are prone to numerical
issues related to underflow or overflow, depending on the sign and magnitude of W(y, B, B′). The
standard approach to sidestep these problems is to rewrite these expressions as

Pr(B′ = i|y, B) =
exp W(y,B,i)−W(y,B)

ρ

∑j exp W(y,B,j)−W(y,B)
ρ

(14)
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and

Vr(y, B) = W(y, B) + ρ log

[
∑

j
exp

W(y, B, j)−W(y, B)
ρ

]
, (15)

where W(y, B) = maxB′ W(y, B, B′), the maximum over the choices, without considering taste
shocks. This formulation is conceptually equivalent but numerically much better behaved, as all
the W −W terms are weakly negative and therefore the exponents are bounded above by 1.

Analogously, for the default decision, defining V(y, B) = max{Vd(y), Vr(y, B)}, we use

Pr(d = 1|y, B) =
exp Vd(y)−V(y,B)

η

exp Vd(y)−V(y,B)
η + exp Vr(y,B)−V(y,B)

η

(16)

and

V(y, B) = V(y, B) + η log
[

exp
Vd(y)−V(y, B)

η
+ exp

Vr(y, B)−V(y, B)
η

]
. (17)

We are now ready to lay out the main algorithm. We will use an “one loop”9 algorithm, where,
in each iteration, we use the bond price schedule q0 and value functions V0 and Vd

0 from the
previous iteration to construct this iteration’s corresponding objects.

Step 1. Initialization. One-time, initial setup:

a) Fix parameter values and functional forms for u(c) and h(y).

b) Construct grids for the y and B states, Y and B, and the transition matrix Πy.

c) Set initial guesses: q0(y, B′) = qrf, V0(y, B) = u(y−κB)
1−β , and Vd

0 (y) =
u(h(y))

1−β .

Step 2. Update. Construct new values, policies, and prices:

a) Use V0 and Vd
0 on the RHS of equation (3) to construct Vd

1 .

b) Use q0 and V0 to construct W, using (9).

c) Construct Vr
1 and choice probabilities Pr(B′ = i|y, B) using equations (14) and (15).

d) Use Vr
1 and Vd

1 to construct V1 and Pr(d = 1|y, B) using (16) and (17).

e) Use borrowing Pr(B′ = i|y, B) and default Pr(d = 1|y, B) choice probabilities, together
with q0, to construct q1 using (13).

Step 3. Check for Convergence. Compare ||V1 −V0||, ||Vd
1 −Vd

0 ||, and ||q1 − q0|| against conver-
gence thresholds. If all three norms are smaller than their respective thresholds, stop, and
use the objects constructed in the latest iteration as the equilibrium policies, values, and
prices. Otherwise, update the guesses, q0 ← q1, Vd

0 ← Vd
1 , V0 ← V1 and return to Step 2.

9. Arellano (2008) describes a “two loops” algorithm: given a bond price schedule, an inner loop iterates on value
functions to convergence, while an outer loop iterates to convergence on the bond price schedule. Such an approach
is generally slower and not necessarily more likely to converge than our “one loop” algorithm. Similarly, we do not
dampen the updating of the q function.
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3.3 Simulating the Model

With the model’s solution in hand, we can use equilibrium bond prices, together with borrowing
and default policies, to simulate time paths for our model. The simulation algorithm is as follows:

Step 1. Initialization.

a) Fix the length of the simulation, T periods.

b) Simulate the entire time path for the exogenous shock {yt}T
t=2 using its transition

matrix and an initial value y1 (e.g., the unconditional mean).

c) Set the initial debt levels B0 = B1 = 0 and assume that the country is in good credit
standing in period 1, with d1 = 0.

Step 2. Simulate. For each period t ∈ {2, 3, . . . , T}:

a) If the country was in default in period t− 1, with dt−1 = 1, then return them to market
with probability χ. If the draw is such that the country returns, set dt = 0 and Bt = 0.
If the draw is unsuccessful, set dt = 1 and Bt = Bt−1, as the country must remain
excluded.

b) If dt = 0, the country may choose to default this period with probability Pr(dt =

1|yt, Bt). Draw from the uniform distribution to simulate this event. If the country does
default, set dt = 1, otherwise keep dt = 0.

c) If dt = 0, simulate Bt+1 from the pmf induced by the choice probabilities Pr(Bt+1|yt, Bt)

and using it to compute the yield-to-maturity spread spt implied by q(yt, Bt+1). Use
the expression for consumption in (2) to construct ct and the trade balance to GDP
ratio, tbyt = 1− ct/yt. If instead we have dt = 1, set Bt+1 = Bt, spt = ∞, ct = h(yt),
and tbyt = 0.

Step 3. Sample Selection. Mark as invalid the first K ≥ 2 periods, to avoid any dependency on
the simulation’s initial conditions, and any period in default, with dt = 1. Since our model
lacks recovery, the trade balance is abnormally negative in the first few periods following
the return to market, so we might want to also mark an invalid N ≥ 0 periods after the
return to market, in which case we mark period t as invalid whenever ∑N

τ=0 dt−τ ̸= 0. We
compute statistics over valid periods only, with care taken to only include valid periods
following valid periods in the computation of autocorrelations.

3.4 A Sample Parameterization

A full calibration of the model to a set of target data moments is beyond the scope of this article.
Instead, we briefly describe a sample quarterly parameterization, based on common functional
forms and parameter values which deliver quantitative features roughly in line with the literature,
to illustrate a typical result.
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We assume that the utility function exhibits constant relative risk aversion, with a risk aversion
coefficient σ = 2 and set u(c) = (1− β) c1−σ−1

1−σ = (1− β)(1− c−1). The penalty function h(y) is
shaped by two parameters, as in Chatterjee and Eyigungor (2012), h(y) = y−max{0, λ0y + λ1y2},
with λ0 ≤ 0 ≤ λ1. The endowment process y is governed by an AR(1) process with unconditional
mean 1, autocorrelation ρy and standard deviation of innovations σy, which we discretize into a
Markov chain using standard quadrature methods.

Table 1 collects the parameter values while Table 2 and Figure 1 display key moments and
select policies, respectively. The solution uses #Y = 31 and #B = 600 grid points for y and
B, respectively. A Modern Fortran implementation, parallelized with OpenMP, is available at
https://github.com/gabrielgggg/defaultModel.

Value Description

Preferences and endowment
σ 2.0 CRRA
β 0.9775 Sovereign discounting
ρy 0.95 Endowment autocorrelation
σy 0.005 Endowment innovation

International lending
r 0.01 Risk-free rate
δ 0.04 5 years debt duration
κ r + δ Normalization, qrf = 1

Default
λ0 −0.48 Penalty linear term
λ1 0.525 Penalty quadratic term
χ 0.125 2 years average market exclusion

Taste shocks
η 5e−4 Default choice
ρ 1e−5 Borrowing choice

Table 1: Parameter Values

4 Extensions

In Section 2, we restricted attention to a canonical, baseline environment, to highlight the default
and borrowing choices, and abstracted from many arguably important features of the data. We
now consider briefly several extensions which mitigate some of these limitations of the textbook
model and address whether and how our algorithms must be adapted.
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Moment Value

Mean
Debt to GDP 7.9
Spread 2.1

Standard Deviation
Spread 0.9
GDP 1.5
Consumption 1.7

Correlation with GDP
Spread −44.7
Trade Balance to GDP −29.4

Table 2: Moments (%)
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Figure 1: Sample Plots
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4.1 Haircuts and Recovery

In the data, debt is seldom repudiate wholesale. Instead, as the evidence collected by Cruces and
Trebesch (2013) shows, lenders enjoy eventually at least a partial recovery. Sovereigns swap the
old, defaulted instruments for new debt, often involving an extension of the maturity structure
(Mihalache 2020), and resume debt service payments, under the new terms. Two major branches
of the literature concern recovery. First, following Yue (2010), several papers employ generalized
Nash bargaining to determine the level of recovery following default, but maintain the assumption
of a market exclusion spell of exogenous, random duration. The second set of papers focuses,
instead, on the endogenous determination of the length of market exclusion, via non-cooperative,
alternating offers bargaining, so that both the eventual haircut and the length of time negotiations
take are endogenous. Pitchford and Wright (2012) and Dvorkin et al. (2021) are salient examples.

Finally, it is common in applied work for authors to assume a constant recovery rate, for
example Hatchondo, Martinez, and Sosa-Padilla (2016). Such as assumption makes it more likely
that the model exhibit what Chatterjee and Eyigungor (2015) call “maximum dillution before
default,” for the sovereign to borrow an arbitrarily large amount in the current period, B′ → ∞,
default next period with certainty, but receive today from its international lenders the net present
value of the eventual recovery. A common solution, to rule out this behavior in equilibrium, is to
invoke underwriting standards and impose that bond prices cannot fall below a certain exogenous
threshold, e.g. q(y, B′) ≥ qmin. Equivalently, an upper bound on spreads can be imposed.

The presence of recovery does not alter substantively the numerical strategy of Section 3.2,
especially in the case of the extension with Nash bargaining over recovery rates (Yue 2010).

4.2 Lender Risk Aversion

It is relatively straightforward to depart from the stark assumption of risk-neutral, deep-pocketed,
competitive international lenders, either because one might want to induce a risk premium
component to the spread or in order to study the consequences for emerging markets of shocks to
the lenders’ wealth or home market conditions.

Lizarazo (2013) and Aguiar et al. (2016) consider risk-averse lenders, who allocate an endoge-
nous share of their wealth to buying the sovereign’s risky debt, with the rest saved using risk-free
investment options in the financial center. Related, Morelli, Ottonello, and Perez (2022) consider
collateral-constrained global financial intermediaries, to study the cross-country comovements
caused by the tightness of their financial constraint. Hatchondo, Martinez, and Sosa-Padilla (2016)
employ lenders with Epstein-Zin preferences and a random trend endowment, while Bianchi,
Hatchondo, and Martinez (2018) rely on a reduced-form, exponential-affine pricing kernel, a
one-factor SDF as in Vasicek (1977).

Independent of the structure driving the lenders’ discount factor, equation (5) becomes

q(y, s, B′) = Ey′,s′|y,s
{

m(s, s′) (1−D(y′, s′, B′))
[
κ + (1− δ)q(y′, s′,B(y′, s′, B′))

]}
, (18)
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where s is a shock driving the lenders’ pricing kernel m, be it the lenders’ wealth level, endowment
growth rate, or a reduced-form factor. All expectations must now be taken over not only y′ but
also s′. Moreover, all value functions require s as an additional state variable. Our algorithm
remains otherwise unchanged.

4.3 Self-fulfilling Crises

So far we have followed the Eaton and Gersovitz (1981) timing assumption. First, the sovereign
decides whether to default or not and then, conditional on not defaulting, it can auction off more
bond units. Implicit in this timing is the assumption that the sovereign cannot decide to default
after dealing with its lenders, depending on the outcome of the bond auction. In contrast, an
extensive literature on self-fulfilling crises studies defaults caused by coordination failures in
sovereign debt markets, based on the timing assumption of Cole and Kehoe (2000): the sovereign
attempts to auction off additional bond units and then, after observing the outcome of the auction,
can decide to default. This opens up the possibility for the following notion of self-fulfilling crisis.
Each lender might worry that not enough lenders will participate in the auction, in which case
the sovereign cannot issue enough bond units to roll over its debt and it will choose to default
once the auction concludes on unfavorable terms. In some states of the world, two equilibria are
possible: 1) all lenders participate in the auction, the sovereign is able to roll over its debt, and it
chooses not to default, confirming the lenders’ belief that the auction will be successful, the “good
equilibrium”, and 2) no lenders participate in the auction, the sovereign cannot roll over its debt
and it chooses to default, confirming the lenders’ belief that joining the auction is undesirable, the
“bad equilibrium.” It is standard to assume that lenders coordinate on one of the two equilibria
based on the realization of a public sunspot variable.

To fix ideas, consider the following structure, loosely based on the recursive formulation in
the Online Appendix of Bocola and Dovis (2019), who study the interactions between maturity
choice and the risk of self-fulfilling default during the European Debt Crisis of the early 2010s.
We introduce a sunspot variable ξ ∈ {0, 1} and assume it is iid with Pr(ξ = 1) = p. When ξ = 0,
self-fulfilling crises are not possible and lenders always coordinate on the “good equilibrium.”
Instead, when ξ = 1, if we are in a state in which a failed auction would trigger a default, lenders
will indeed lock the sovereign out of the primary market and thus surely force a default.

We eliminate the taste shocks on the default-versus-repayment decision, as they would create
significant conceptual difficulties in their interaction with the self-fulfilling crisis sunspot, and
consider the following intra-period timing: first, ξ is realized and the sovereign’s market access or
exclusion is determined. Then, conditional on enjoying market access, the taste shocks associated
with the various B′ options are realized. This means that lenders use the sunspot variable to
coordinate on whether to participate in the auction based on their ex-ante beliefs over borrowing
behavior, the choice probabilities over B′ and not on particular realizations.

If the sovereign were to be locked out of markets but continue to service the outstanding debt,
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it would achieve a value given by

Vℓ(y, B) = u(y− κB) + βEy′,ξ ′|yV(y′, ξ ′, (1− δ)B). (19)

Then, the default policy is given by

D(y, ξ, B) =


1, if Vr(y, B) < Vd(y)

1, if Vℓ(y, B) < Vd(y) and ξ = 1

0, otherwise.

(20)

The first branch of equation (20) reflects fundamental default, where the sovereign is better off
defaulting even if it could enjoy normal market access. The second is the self-fulfilling default
case, the sunspot variable in unfavorable, ξ = 1, and default is preferable to servicing the debt
without rolling over.

Using the previous characterization of default behavior, we can write the start-of-period value
function as

V(y, ξ, B) = D(y, ξ, B)Vd(y) + (1−D(y, ξ, B))Vr(y, B), (21)

and stress that Vℓ is never reached in equilibrium, the country is never forced to service its debt
without rolling over if doing so would not trigger a default.

Finally, the bond price schedule is now given by

q(y, B′) =
1

1 + r
Ey′,ξ ′|y(1−D(y′, ξ ′, B′))

[
κ + (1− δ)∑

j
Pr(B′′ = j|y′, B′)q(y′, j)

]
, (22)

and it is not a function of the current ξ, because it is not predictive of future ξ ′ or y′ realization.
Note that this extension did not require any changes to the sovereign’s problem under market

access (10), but it does call for a small update to the continuation value of the W function, to
account for the sunspot shock,

W(y, B, B′) = u(y− κB + [B′ − (1− δ)B]q(y, B′)) + βEy′,ξ ′|yV(y′, ξ ′, B′). (23)

The taste shock structure in (11–12) is otherwise unaffected. The algorithm in Section 3.2 remains
largely unchanged, once the binary ξ shock is incorporated as a state variable for V.

4.4 Multiple Endogenous States, Nested Choices

Our baseline model features one exogenous state variable, the endowment y, and one endogenous
state variable, the debt level B, while the sovereign chooses the debt level for next period B′

conditional on not defaulting this period. We now turn briefly to the question of how one can
extend the method laid out in Section 3 to models with multiple endogenous state variables.
Examples include settings with multiple debt maturities (Arellano and Ramanarayanan 2012;
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Hatchondo, Martinez, and Sosa-Padilla 2016; Mihalache 2020), flexible maturity choice (Bocola
and Dovis 2019; Dvorkin et al. 2021), or capital and investment (Gordon and Guerron-Quintana
2018; Asonuma and Joo 2022).

To fix ideas, consider a model with debt and physical capital, as in Gordon and Guerron-
Quintana (2018), and maintain for tractability the assumption that the sovereign makes all domestic
decisions, including the level of investment. Now, the state variables are the productivity level y,
the debt level B, and the capital stock K, while the sovereign’s choices include the debt level B′

and the capital stock K′ for next period.
Equation (9) becomes

W(y, B, K, B′, K′) = u(c) + βEy′|yV(y′, B′, K′)

with c = yKα − κB + [B′ − (1− δ)B]q(y, B′, K′)− K′ + (1− ∆)K−Φ(K, K′),
(24)

where ∆ is the depreciation rate for capital, Φ(K, K′) is an adjustment cost, and output is given by
yKα, as we abstract from labor supply for simplicity.

A straightforward way to proceed is to treat each {B′, K′} pair as a discrete choice and assign
an Extreme Value Type I shock to each of them. In this case, choice probabilities and the expected
value function are

Pr(B′ = bi, K′ = ki|y, B, K) =
exp W(y,B,K,bi ,ki)

ρ

∑j exp W(y,B,K,bj,k j)
ρ

(25)

and

Vr(y, B, K) = ρ log

[
∑

j
exp

W(y, B, K, bj, k j)

ρ

]
, (26)

similar to before, in Section 3.
While straightforward, treating each {B′, K′} pair as a choice means that we cannot control the

quantitative importance of taste shocks for the B′ choice separately from that for K′, the parameter
ρ plays both roles by necessity. A tractable way to circumvent this limitation is to use a nested
discrete choice structure. One interpretation is that we are allowing for correlations between the
state shocks across the B′ or K′ dimensions of choice (Dvorkin et al. 2021). Another, more informal,
way to think of this structure is that the sovereign chooses B′ conditional on having chosen a
particular K′, subject to taste shocks, and that K′ is chosen, subject to taste shocks, for a fixed B′.

Conditional on an arbitrary B′, choice probabilities over K′ are given by

Pr(K′ = ki|y, B, K, B′) =
exp W(y,B,K,B′,ki)

ρK

∑j exp W(y,B,K,B′,k j)
ρK

(27)

with associated ex-ante value

WK(y, B, K, B′) = ρK log

[
∑

j
exp

W(y, B, K, B′, k j)

ρK

]
. (28)
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Then, the outer choice over B′ satisfies

Pr(B′ = bi|y, B, K) =
exp WK(y,B,K,bi)

ρB

∑j exp WK(y,B,K,bj)
ρB

(29)

and the ex-ante value of repayment becomes

Vr(y, B, K) = ρB log

[
∑

j
exp

WK(y, B, K, bj)

ρB

]
. (30)

In the simulation, we would first draw B′ from the pmf Pr(B′|y, B, K) and then K′ from
Pr(K′|y, B, K, B′). Finally, note that this formulation also supports the limit case under which the
choice of K′ is deterministic given B′, under ρK → 0.

While apparently more cumbersome than treating each {B′, K′} pair as its own choice, sym-
metrically, this nested approach allows us to use the two parameters ρK and ρB to separately
control the magnitude of taste shocks over the two dimensions of choice.
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